Algebraic Criteria of the Integral Separation for Solving Certain Classes of Ordinary Differential Equations Systems

Author:

Akhrem A. A.1,Nosov A. P.1ORCID

Affiliation:

1. Federal Research Center "Informatics and Control" of RAS, Moscow

Abstract

One of the important directions of the qualitative theory of ordinary differential equations is to study the properties of linear systems that satisfy the condition of integral separation. Anyway, integral separation becomes apparent in all studies concerning the asymptotic behavior of the solutions for the linear systems under the action of small perturbations.The papers of V.M. Millionschikov, B.F. Bylov, N.A. Izobov, I.N. Sergeev et al. proved that the available integral separation is the main reason for the rough stability of the characteristic Lyapunov exponents, the rough stability of the highest Lyapunov exponent, and the rough diagonalizability of systems by Lyapunov transformations, and other fundamental properties of linear differential systems.The paper presents the basic properties of the set of linear systems with constant, periodic, reducible coefficients and proves the algebraic criteria for their property of integral separation of solutions to be available.The results can be used in modeling dynamic processes.

Publisher

NPG Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Reference16 articles.

1. Knopp K., Perron O. Uber lineare Differentialgleichungen, bei denen die unabhangig Variable reell ist (Zweite Mitteilung). J. fur die reine und angewandte Mathematik, 1913, vol. 1913, no. 143, s. 25–50. DOI: 10.1515/crll.1913.143.25

2. Bylov B.F. On reduction of a system of linear equations to a diagonal form. Matematicheskij sbornik. N.S. [Mathematical Digest. New Series], 1965, vol. 67(109), no. 3, pp. 338-344 (in Russian).

3. Lillo J.C. Perturbations of nonlinear systems. Acta Mathematica, 1960, vol. 103, no. 1-2, pp. 123–138. DOI: 10.1007/BF02546527

4. Bylov B.F., Izobov N.A. Necessary and sufficient conditions for the stability of the characteristic exponents of a diagonal system. Differentsial’nye uravneniia [Differential Equations], 1969, vol. 5, no. 10, pp. 1785-1793 (in Russian).

5. Bylov B.F., Izobov N.A. Necessary and sufficient conditions for the stability of the characteristic exponents of a linear system. Differentsial’nye uravneniia [Differential Equations], 1969, vol. 5, no. 10, pp. 1794-1803 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3