Finite-element Modeling Irreversible Polarization Process of Ferroelectric Ceramics

Author:

Skaliukh A. S.1ORCID

Affiliation:

1. Institute of Mathematics, Mechanics and Computer Sciences n.a. I.I.Vorovich of the Southern Federal University, Rostov on Don

Abstract

A finite-element model developed for quasi-static processes describes irreversible processes of deformation and polarization occurring in polycrystalline ferroelectric media due to the effect of intense electric fields and mechanical loads. The paper presents external parameters such as strain and polarization as a sum of residual and reversible parts. Using the incremental theory, the virtual work law, and the constitutive relations for reversible and irreversible components, a system of linear algebraic equations was built for the increments of nodal values of the main variables, namely the displacement vector and the electric potential, during the transition from one equilibrium state to another.The constructed constitutive relations connect the reversible parts of the strain and polarization with the stresses and the electric field in the form of linear tensor equations. It is shown that the physical characteristics depend on the residual parameters so that the coefficients of elastic compliance and dielectric constant linearly depend on the principal values of residual strain, and the piezoelectric modules depend linearly on the module of residual polarization. The constitutive relations for the increments of the residual parameters are determined as element values for each finite element from the equations in differentials. Ultimately, the task is reduced to a system of linear algebraic equations, the matrix and right sides of which depend on the residual parameters and are determined at each equilibrium state. As a result, the non-linearity of the problem is replaced by solving a sequence of linear problems until the external loads reach their final values.The model is implanted into a finite-element complex, which allows us to determine the fields of residual strain and polarization, the physical characteristics of a partially polarized body, and local anisotropy for the case of complete and partial polarization.

Publisher

NPG Publishing

Subject

General Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3