Redshift distances in modified flat Friedmann-Lemaître-Robertson-Walker spacetime containing g00(t)

Author:

Haase Steffen

Abstract

In the present paper we use a modified flat Friedmann-Lemaitre-Robertson-Walker metric containing g_00(t) describing a spatially homogeneous and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the general astrophysical literature. Using the flat Friedmann-Lemaitre-Robertson-Walker metric the radial physical distance is described by R(t) = a(t)r. In this equation the radial co-moving coordinate is named r and the time-depending scale parameter is named a(t). We use the co-moving coordinate r_e (the subscript e indicates emission) describing the place of a galaxy which is emitting photons and r_a (the subscript a indicates absorption) describing the place of an observer within a different galaxy on which the photons - which were traveling thru the universe - are absorbed. Therefore the physical distance - the real way of light - is calculated by D = a(t_0)r_a - a(t_e)r_e ≡ R_0a - R_ee. Here means a(t_0) the today’s (t_0) scale parameter and a(t_e) the scale parameter at the time t_e of emission of the photons. The physical distance D is therefore a difference of two different physical distances from an origin of coordinates being on r = 0. Nobody can doubt this real travel way of light: The photons are emitted on a co-moving coordinate place r_e and are than traveling to the co-moving coordinate place r_a. During this traveling the time is moving from t_e to t_0 (t_e ≤ t_0) and therefore the scale parameter is changing in the meantime from a(t_e) to a(t_0). Using this right physical distance we calculate some different redshift distances and some relevant classical cosmological equations (effects) and compare these theoretical results with some measurements of astrophysics (quasars, SN Ia and black hole). We get the today’s Hubble parameter H_0a ≈ 65.2 km/(s Mpc) as a main result. This value is a little smaller than the Hubble parameter H_0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data. Furthermore, we find for the radius of the so-called Friedmann sphere R_0a ≈ 2,586.94 Mpc. This radius is not the maximum possible distance of seeing within an expanding universe. Photons, which were emitted at this distance, are not infinite red shifted. The today’s mass density of the Friedmann sphere results in ρ_0m ≈ 9.09 x E-30 g/cm3. For the mass of the Friedmann sphere we get M_Fs ≈ 1.94 x E+55 g. The mass of black hole within the galaxy M87 has the value M_BH,M87 ≈ 1.56 x E+43 g. The redshift distance of this object is D ≈ 19.60 Mpc but its today’s distance is only D_0 ≈ 12.27 Mpc. The radius of this black hole is R_S ≈ 1.498 x E-3 pc. Key words: relativistic astrophysics, theoretical and observational cosmology, redshift, Hubble parameter, quasar, galaxy, M87, SN Ia, black hole, flat universe, Friedmann-Lemaitre-Robertson-Walker metric, general relativity Wenn Text markiert ist, bietet WORD über das Menü der rechten Maustaste Übersetzungsmöglichkeiten an. Tun wir das für Englisch ---> Deutsch mit dem Abstract, erhalten wir: Das funktioniert nicht wie gedacht: Man kann einzelne Worte markieren und dich dann die jeweilige Übersetzung davon anschauen. Wäre demnach zur Übersetzung einzelner Worte geeignet, die einem nicht einfallen. ..... Man sieht die Übersetzung vermittels der QuickInfo, falls das Wort im Wörtebuch existiert (eingeschaltet nach der ersten Wort-Markierung und Übersetzung davon). - Wieder Ausschalten dann nicht vergessen. Abstract In the present paper we use a modified flat Friedmann-Lemaitre-Robertson-Walker metric containing g00(t) describing a spatially homogeneous and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the general astrophysical literature. Using the flat Friedmann-Lemaitre-Robertson-Walker metric the radial physical distance is described by R(t) = a(t)r. In this equation the radial co-moving coordinate is named r and the time-depending scale parameter is named a(t). We use the co-moving coordinate re (the subscript e indicates emission) describing the place of a galaxy which is emitting photons and ra (the subscript a indicates absorption) describing the place of an observer within a different galaxy on which the photons - which were traveling thru the universe - are absorbed. Therefore the physical distance - the real way of light - is calculated by D = a(t0)ra - a(te)re ≡ R0a - Ree. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time te of emission of the photons. The physical distance D is therefore a difference of two different physical distances from an origin of coordinates being on r = 0. Nobody can doubt this real travel way of light: The photons are emitted on a co-moving coordinate place re and are than traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and therefore the scale parameter is changing in the meantime from a(te) to a(t0). Using this right physical distance we calculate the redshift distance and some relevant classical cosmological equations (effects) and compare these theoretical results with some measurements of astrophysics (quasars, SN Ia and black hole). We get the today’s Hubble parameter H0a ≈ 65.2 km/(s Mpc) as a main result. This value is a little smaller than the Hubble parameter H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data. Furthermore, we find for the radius of the so-called Friedmann sphere R0a ≈ 2,586.94 Mpc. This radius is not the maximum possible distance of seeing within an expanding universe. Photons, which were emitted at this distance, are not infinite red shifted. The today’s mass density of the Friedmann sphere results in ρ0m ≈ 9.09 x 10-30 g/cm3. For the mass of the Friedmann sphere we get MFs ≈ 1.94 x 1055 g. The mass of black hole within the galaxy M87 has the value MBH,M87 ≈ 1.56 x 1043 g. The redshift distance of this object is D ≈ 19.60 Mpc but its today’s distance is only D0 ≈ 12.27 Mpc. The radius of this black hole is RS ≈ 1.498 x 10-3 pc.

Publisher

NPG Publishing

Reference12 articles.

1. [1] M.-P. Véron-Cetty and P. Véron, A Catalogue of Quasars and Active Nuclei, 13th edition, March 2010, http://www.obs-hp.fr/catalogues/veron2_13/veron2_13.html

2. [2] K. Nilsson, M. J. Valtonen, J. Kotilainen and T. Jaakkola, Astro. J. 413 (1993), 453.

3. [3] W. L. Freedman u. a., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, arXiv.org:1907.05922

4. [4] The Planck Collaboration: Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209

5. [5] The Event Horizon Telescope Collaboration, The Astrophysical Journal Letters, 875:L1 (17pp), 2019 April 10, https://doi.org/10.3847/2041-8213/ab0ec7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3