Abstract
The planning of safe trajectories in critical traffic scenarios using model-based algorithms is a very computationally intensive task. Recently proposed algorithms, namely Hybrid Augmented CL-RRT, Hybrid Augmented CL-RRT+ and GATE-ARRT+, reduce the computation time for safe trajectory planning drastically using a combination of a deep learning algorithm 3D-ConvNet with a vehicle dynamic model. An efficient embedded implementation of these algorithms is required as the vehicle on-board micro-controller resources are limited. This work proposes methodologies for replacing the computationally intensive modules of these trajectory planning algorithms using different efficient machine learning and analytical methods. The required computational resources are measured by downloading and running the algorithms on various hardware platforms. The results show significant reduction in computational resources and the potential of proposed algorithms to run in real time. Also, alternative architectures for 3D-ConvNet are presented for further reduction of required computational resources.
Subject
Artificial Intelligence,Information Systems and Management,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献