Author:
Li Chenglong, ,Ding Ning,Dong Haoyun,Zhai Yiming,
Abstract
With the development of e-commerce, credit card fraud is also increasing. At the same time, the way of credit card fraud is also constantly innovating. Support Vector Machine, Logical Regression, Random Forest, Naive Bayes and other algorithms are often used in credit card fraud identification. However, the current fraud detection technology is not accurate, and may cause significant economic losses to cardholders and banks. This paper will introduce an innovative method to optimize the support vector machine by cuckoo search algorithm to improve its ability of identifying credit card fraud. Cuckoo search algorithm improves classification performance by optimizing the parameters of support vector machine kernel function (C, g). The results demonstrate that CS-SVM is superior to SVM in Accuracy, Precision, Recall, F1-score, AUC, and superior to Logistic. Regression, Random Forest, Decision Tree, Naive Bayes, whose accuracy is 98%.
Subject
Artificial Intelligence,Information Systems and Management,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献