Black Sigatoka Classification Using Convolutional Neural Networks

Author:

Escudero Cristian A., ,Calvo Andrés F.,Bejarano Arley

Abstract

In this paper we present a methodology for the automatic recognition of black Sigatoka in commercial banana crops. This method uses a LeNet convolutional neural network to detect the progress of infection by the disease in different regions of a leaf image; using this information, we trained a decision tree in order to classify the level of infection severity. The methodology was validated with an annotated database, which was built in the process of this work and which can be compared with other state-of-the-art alternatives. The results show that the method is robust against atypical values and photometric variations.

Publisher

EJournal Publishing

Subject

Artificial Intelligence,Information Systems and Management,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Convolution Neural Network with Skip Connections (CNNSC) approach for detecting micronutrients boron and iron deficiency in banana leaves;Journal of Umm Al-Qura University for Engineering and Architecture;2024-05-28

2. Enhancing Banana Cultivation: Disease Identification through CNN and SVM Analysis for Optimal Plant Health;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

3. Detection of Leaf Black Sigatoka Disease in Enset Using Convolutional Neural Network;Lecture Notes in Networks and Systems;2024

4. Banana Leaf Diseases and Machine Learning Algorithms Applied to Detect Diseases: A Study;Emerging Technologies in Data Mining and Information Security;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3