A Comparative Analysis Using Different Machine Learning: An Efficient Approach for Measuring Accuracy of Face Recognition

Author:

Faridi Muhammad Shakeel, ,Zia Muhammad Azam,Javed Zahid,Mumtaz Imran,Ali Saqib

Abstract

Feature extracting and training module can be done by using face recognition neural learning techniques. Moreover, these techniques are widely employed to extract features from human images. Some detection systems are capable to scan the full body, iris detection, and finger print detection systems. These systems have deployed for safety and security intension. In this research work, we compare different machine learning algorithms for face recognition. Four supervised face recognition machine-learning classifiers such as Principal Component Analysis (PCA), 1-nearest neighbor (1-NN), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) are considered. The efficiency of multiple classification systems is also demonstrated and tested in terms of their ability to identify a face correctly. Face Recognition is a technique to identify faces of people whose images are stored in some databases and available in the form of datasets. Extensive experiments conducted on these datasets. The comparative analysis clearly shows that which machine-learning algorithm is the best in terms of accuracy of image detection. Despite the fact, other identification methods are also very effective; face recognition has remained a major focus of research due to its non-meddling nature and being the easy method of personal identification for people. The findings of this work would be useful identification of a suitable machine-learning algorithm in order to achieve better face recognition accuracy.

Publisher

EJournal Publishing

Subject

Artificial Intelligence,Information Systems and Management,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Medical Image Enhancement to Denoise Poisson Noises Using Neural Network and Autoencoders;Inventive Systems and Control;2022

2. AI based face recognition system using FaceNet deep learning architecture;INTELLIGENT SYSTEMS: A STEP TOWARDS SMARTER ELECTRICAL, ELECTRONIC AND MECHANICAL ENGINEERING: Proceedings of 2nd International Conference on Industrial Electronics, Mechatronics, Electrical and Mechanical Power (IEMPOWER), 2021.;2022

3. A Novel and Robust Approach to Detect Tuberculosis Using Transfer Learning;Journal of Healthcare Engineering;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3