Author:
Lin Tong, ,Chen Xin,Tang Xiao,He Ling,He Song,Hu Qiaolin
Abstract
This paper discusses the use of deep convolutional neural networks for radar target classification. In this paper, three parts of the work are carried out: firstly, effective data enhancement methods are used to augment the dataset and address unbalanced datasets. Second, using deep learning techniques, we explore an effective framework for classifying and identifying targets based on radar spectral map data. By using data enhancement and the framework, we achieved an overall classification accuracy of 0.946. In the end, we researched the automatic annotation of image ROI (region of interest). By adjusting the model, we obtained a 93% accuracy in automatic labeling and classification of targets for both car and cyclist categories.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献