A Review of Low Profile Single Layer Microstrip Antennas

Author:

Kasabegoudar Veeresh G., ,Reddy Pradeep

Abstract

The modern wireless systems call for integrating multiple applications. There are numerous techniques available to cater these demands. However the need for thin, light weight and compact wireless applications call for the design of low profile and single layer antennas with multiple features. Hence, this paper deliberates on the comprehensive review of compact, low profile, and single layer microstrip antennas suitable for fifth generation (5G) wireless applications, wireless local area network (WLAN), worldwide interoperability for microwave access (Wi-Max), and other state of the art wireless applications. The techniques discussed here consider the performance improvement of one or more parameters of the antenna. These parameters include the improvement of impedance (10dB return loss) bandwidth, gain, 3dB axial ratio (AR) bandwidth, improvement of isolation between the ports in multiple input multiple output (MIMO) antennas, and excitation of dual modes/dual polarization/circular polarization. Antennas with all such techniques and their advantages, applications & limitations have been discussed in detail. The studies presented here on single layer planar antennas offer a maximum impedance bandwidth of up to 68%, highest axial ratio bandwidth of 46%, and 11.6dBi gain for single element & 25.6dBi gain for arrays. Other significant findings covered are antennas with triple bands operation, arrays with less than -37.5dB mutual coupling and compact antennas with more than 60% reduction in physical area. In addition to the advantages and applications, their limitations and drawbacks are also discussed.

Publisher

EJournal Publishing

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial Discharge Wideband Full-Band High-Gain Resonant Cavity UHF Sensor Research;Sensors;2023-08-01

2. RCS Reduction of High-Gain Microstrip Antenna Based on Slot-loaded TM30 Mode;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

3. Design and Simulation of Microstrip Patch Antenna Using Circular Structure;2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS);2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3