Comparison of Conventional and Modified Direct Torque Control of Three-Phase Induction Motor Using Three-Level Flying Capacitor Inverter

Author:

Mohammed Amirah J., ,Hassan Raaed F.

Abstract

The work presented in this paper aims to compare the effectiveness of different control strategies to improve the performance of the three-phase Induction Motor (IM). The Conventional Direct Torque Control (CDTC) was employed as the first strategy for driving the IM. This control strategy causes high ripples in the IM's torque and speed due to the hysteresis comparators and a variable switching frequency due to the look-up table. A modified DTC strategy based on Space Vector Modulation (DTC-SVM) was chosen as a second strategy to enhance the performance of the IM using the two-level inverter. This method, which leads to the reduction of the torque and speed ripples and achieves constant switching frequency. As the multi-level inverter becomes most popular than the two-level inverter, the third strategy is devoted to adopting the three-level flying capacitor inverter (TLFCMLI) -based DTC-SVM. The third strategy uses the method of mapping the multi-level space vector based on basic two-level SVM. Matlab/Simulink software package is utilized to implement the suggested controllers. Simulation results show that the DTC-SVM based on TLFCMLI significantly enhances the IM's performance compared with the other two strategies from the voltage and current profiles, torque, and speed points of view.

Publisher

EJournal Publishing

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study Between Two Switching Angle Techniques for Cascaded H-Bridge Multilevel Inverter;2023 International Conference on Power and Renewable Energy Engineering (PREE);2023-10-20

2. Torque Characteristics Analysis for Doubly-Fed Induction Machine Based on Magnetic Field Coupling with Multiple Number-Components of Spatial Pole Pairs;2023 5th International Conference on Power and Energy Technology (ICPET);2023-07-27

3. A Novel Mixed Control Strategy with Grid-Following and Grid-Forming for Renewable Energy Grid-Connected Inverter;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

4. Research on Coordinated Control of Engine and Motor in Hybrid Vehicles for Improving the Economic Performance;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

5. Fuzzy logic based performance enhancement of direct torque control using T-type inverter;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3