Author:
Maamoun I., ,Falyouna O.,Eljamal R.,Bensaida K.,Eljamal O.
Abstract
Hexavalent chromium is one of the highly toxic heavy metals which could lead to severe health issues when it is discharged into aquifers as industrial wastewater. In the current study nFe0/Cu was successfully employed in PRB technology for Cr(VI) removal from groundwater. Batch and column experiments confirmed the high reactive performance of nFe0/Cu towards Cr(VI) removal by around 85% removal efficiency. The main pathways for Cr-species removal by nFe0/Cu were determined as the reduction of Cr(VI) to Cr(III) by both nFe0 and Cu0 and the precipitation/co-precipitation of Cr(III) with the released iron oxides on the nFe0/Cu surface. The developed 3D-surface response optimization model confirmed the reciprocal relation between the residence time, barrier thickness and hydraulic conductivity. The interaction and sensitivity analysis between the model’s parameters were significantly crucial for defining the optimal design conditions of the nFe0/Cu-PRB. Generally, the current study could represent a great contribution in scaling-up the PRB technology towards the real field applications.
Subject
General Environmental Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献