Development of Deep Learning for Power Energy Optimization in the Industrial Robot System

Author:

Butsanlee Borihan,Pongaen Watcharin,Rothong Nuttapon,Ponpitakchai Supawan,U-Thathong Songkran

Abstract

This paper established power consumption modeling and motion estimation optimization of industrial robots. We also studied factors affecting the use of electrical energy, such as friction, torque, and electric current. The energy consumption parameters of each coupling can be quantified through the Deep Learning (DL) technique, Scaled Conjugate Gradient (SCG) estimation, or Simulation and experimentation based on the movement posture of a given robot dynamic model to control the robot operation. The robot dynamic model parameters can be identified and expressed in mathematical equations. Electrical energy consumption estimates were analyzed using the SCG technique to compare with the Nonlinear Least Squares (NLS) method using a large dataset of approximately 60,000 samples. The results showed accurate parameter prediction and electrical energy consumption estimation of the robot locomotion pose. The maximum errors in the SCG and NLS methods were 0.89% and 1.54%, respectively. It indicated that the electric energy consumption model using the SCG estimation method is more efficient than the NLS method.

Publisher

EJournal Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3