Author:
Ochi Kodai,Matsumoto Mitsuharu
Abstract
Disaster response robots are designed to replace human workers in hazardous environments. When transporting such robots, transportation by aircraft is sometimes desirable because land routes are not always safe. The performance of disaster response robots is constantly improving; however, their volume and mass tend to increase, which makes current disaster response robots unsuitable for air transportation. Thus, robots with variable size and rigidity should be developed to facilitate effective and efficient air transport. Therefore, we developed a lightweight robot that can be stored in a small space. The prototype robot is composed of a lightweight sponge that can be vacuum compressed to save space during transportation and can be deployed from the air. After being transported to the site, the robot can return to its original size by opening the package and releasing it from compression. In addition, the robot’s rigidity is realized using UV-curing resin. The robot is also equipped with a vibration propulsion mechanism, and we confirmed that the robot can move using this mechanism. Furthermore, the robot was found to be able to change direction and carry lightweight objects.