Involvement of casein kinase 1 epsilon/delta (Csnk1e/d) in the pathogenesis of familial Parkinson's disease caused by CHCHD2

Author:

Torii Satoru1ORCID,Arakawa Satoko1ORCID,Sato Shigeto2,Ishikawa Kei‐ichi23ORCID,Taniguchi Daisuke2,Sakurai Hajime Tajima1,Honda Shinya1,Hiraoka Yuuichi45,Ono Masaya6ORCID,Akamatsu Wado3,Hattori Nobutaka2ORCID,Shimizu Shigeomi1ORCID

Affiliation:

1. Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan

2. Department of Neurology, School of Medicine Juntendo University Tokyo Japan

3. Center for Genomic and Regenerative Medicine, School of Medicine Juntendo University Tokyo Japan

4. Laboratory of Molecular Neuroscience, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan

5. Laboratory of Genome Editing for Biomedical Research, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan

6. Department of Clinical Proteomics National Cancer Center Research Institute Tokyo Japan

Abstract

AbstractParkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled‐coil‐helix‐coiled‐coil‐helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α‐Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease‐causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2T61I) is mislocalized in the cytosol. CHCHD2T61l then recruits casein kinase 1 epsilon/delta (Csnk1e/d), which phosphorylates neurofilament and α‐Synuclein, forming cytosolic aggresomes. In vivo, both Chchd2T61I knock‐in and transgenic mice display neurodegenerative phenotypes and aggresomes containing Chchd2T61I, Csnk1e/d, phospho‐α‐Synuclein, and phospho‐neurofilament in their dopaminergic neurons. Similar aggresomes were observed in a postmortem PD patient brain and dopaminergic neurons generated from patient‐derived iPS cells. Importantly, a Csnk1e/d inhibitor substantially suppressed the phosphorylation of neurofilament and α‐Synuclein. The Csnk1e/d inhibitor also suppressed the cellular damage in CHCHD2T61I‐expressing Neuro2a cells and dopaminergic neurons generated from patient‐derived iPS cells and improved the neurodegenerative phenotypes of Chchd2T61I mutant mice. These results indicate that Csnk1e/d is involved in the pathogenesis of PD caused by the CHCHD2T61I mutation.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Immune Dysfunction in Parkinson’s Disease Development;International Journal of Molecular Sciences;2023-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3