Metabolic switch from fatty acid oxidation to glycolysis in knock‐in mouse model of Barth syndrome

Author:

Chowdhury Arpita1ORCID,Boshnakovska Angela1ORCID,Aich Abhishek12,Methi Aditi34,Vergel Leon Ana Maria5,Silbern Ivan67ORCID,Lüchtenborg Christian8,Cyganek Lukas2910,Prochazka Jan11ORCID,Sedlacek Radislav11,Lindovsky Jiri11,Wachs Dominic1,Nichtova Zuzana11,Zudova Dagmar11,Koubkova Gizela11,Fischer André234,Urlaub Henning67ORCID,Brügger Britta8,Katschinski Dörthe M5ORCID,Dudek Jan1,Rehling Peter1212ORCID

Affiliation:

1. Department of Cellular Biochemistry University Medical Center Göttingen Göttingen Germany

2. Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC) University of Göttingen Göttingen Germany

3. Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany

4. Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany

5. Department of Cardiovascular Physiology University Medical Center Göttingen Göttingen Germany

6. The Bioanalytical Mass Spectrometry Group Max Planck Institute for Multidisciplinary Sciences Göttingen Germany

7. Institute for Clinical Chemistry, University Medical Center Göttingen Göttingen Germany

8. Heidelberg University Biochemistry Center (BZH) Heidelberg Germany

9. DZHK (German Center for Cardiovascular Research) partner site Göttingen Göttingen Germany

10. Stem Cell Unit, Clinic for Cardiology and Pneumology University Medical Center Göttingen, Georg‐August University Göttingen Göttingen Germany

11. Czech Centre for Phenogenomics Institute of Molecular Genetics of the CAS Prague Czech Republic

12. Max Planck Institute for Multidisciplinary Science Göttingen Germany

Abstract

AbstractMitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease‐specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid‐driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell‐derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V. Treatment of mutant cells with AMPK activator reestablishes fatty acid‐driven OXPHOS and protects mice against cardiac dysfunction.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3