Affiliation:
1. Department of Biochemistry and Molecular Biology University of Chicago Chicago IL USA
2. The University of Chicago Neuroscience Institute, University of Chicago Chicago IL USA
3. Institute for Biophysical Dynamics University of Chicago Chicago IL USA
Abstract
AbstractTeneurins are conserved cell adhesion molecules essential for embryogenesis and neural development in animals. Key to teneurin function is the ability of its extracellular region to form homophilic interactions in cis and/or in trans. However, our molecular understanding of teneurin homophilic interaction remains largely incomplete. Here, we showed that an extracellular fragment of Teneurin‐m, the major teneurin homolog in flies, behaves as a homodimer in solution. The structure of Teneurin‐m revealed that the transthyretin‐related domain from one protomer and the β‐propeller domain from the other mediates Teneurin‐m self‐association, which is abolished by point mutation of conserved residues. Strikingly, this architecture generates an asymmetric oligomerization interface that enables expansion of Teneurin‐m into long zipper arrays reminiscent of protocadherins. An alternatively spliced site that exists only in vertebrates and regulates homophilic interaction in mammalian teneurins overlaps with the fly Teneurin‐m self‐association interface. Our work provides a molecular understanding of teneurin homophilic interaction and sheds light on its role in teneurin function throughout evolution.
Funder
National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献