Affiliation:
1. Department of Biology University of Rochester Rochester New York USA
2. Department of Physics & Astronomy University of Rochester Rochester New York USA
3. Department of Biomedical Genetics University of Rochester Medical Center Rochester New York USA
Abstract
AbstractThe orientation of the mitotic spindle at metaphase determines the placement of the daughter cells. Spindle orientation in animals typically relies on an evolutionarily conserved biological machine comprised of at least four proteins – called Pins, Gαi, Mud, and Dynein in flies – that exerts a pulling force on astral microtubules and reels the spindle into alignment. The canonical model for spindle orientation holds that the direction of pulling is determined by asymmetric placement of this machinery at the cell cortex. In most cell types, this placement is thought to be mediated by Pins, and a substantial body of literature is therefore devoted to identifying polarized cues that govern localized cortical enrichment of Pins. In this study we revisit the canonical model and find that it is incomplete. Spindle orientation in the Drosophila follicular epithelium and embryonic ectoderm requires not only Pins localization but also direct interaction between Pins and the multifunctional protein Discs large. This requirement can be over‐ridden by interaction with another Pins interacting protein, Inscuteable.
Funder
National Institute of General Medical Sciences
Molecular and Cellular Biosciences
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献