Affiliation:
1. Department of Molecular Medicine Cornell University College of Veterinary Medicine Ithaca NY USA
Abstract
AbstractAs stem cells divide, they acquire mutations that can be passed on to daughter cells. To mitigate potentially deleterious outcomes, cells activate the DNA damage response (DDR) network, which governs several cellular outcomes following DNA damage, including repairing DNA or undergoing apoptosis. At the helm of the DDR are three PI3‐like kinases including Ataxia‐Telangiectasia Mutated (ATM). We report here that knockdown of ATM in planarian flatworms enables stem cells to withstand lethal doses of radiation which would otherwise induce cell death. In this context, stem cells circumvent apoptosis, replicate their DNA, and recover function using homologous recombination‐mediated DNA repair. Despite radiation exposure, atm knockdown animals survive long‐term and regenerate new tissues. These effects occur independently of ATM's canonical downstream effector p53. Together, our results demonstrate that in planarians, ATM promotes radiation‐induced apoptosis. This acute, ATM‐dependent apoptosis is a key determinant of long‐term animal survival. Our results suggest that inhibition of ATM in these organisms could, therefore, potentially favor cell survival after radiation without obvious effects on stem cell behavior.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献