Super‐resolution microscopy reveals focal organization of ER‐associated Y‐complexes in mitosis

Author:

Gandhimathi Rojapriyadharshini12,Pinotsi Dorothea3,Köhler Mario1,Mansfeld Jörg14,Ashiono Caroline1,Kleele Tatjana1,Pawar Sumit1,Kutay Ulrike1ORCID

Affiliation:

1. Department of Biology, Institute of Biochemistry ETH Zurich Zurich Switzerland

2. Molecular Life Sciences Ph.D. Program Zurich Switzerland

3. ScopeM ETH Zürich Zürich Switzerland

4. The Institute of Cancer Research London UK

Abstract

AbstractDuring mitotic entry of vertebrate cells, nuclear pore complexes (NPCs) are rapidly disintegrated. NPC disassembly is initiated by hyperphosphorylation of linker nucleoporins (Nups), which leads to the dissociation of FG repeat Nups and relaxation of the nuclear permeability barrier. However, less is known about disintegration of the huge nuclear and cytoplasmic rings, which are formed by annular assemblies of Y‐complexes that are dissociated from NPCs as intact units. Surprisingly, we observe that Y‐complex Nups display slower dissociation kinetics compared with other Nups during in vitro NPC disassembly, indicating a mechanistic difference in the disintegration of Y‐based rings. Intriguingly, biochemical experiments reveal that a fraction of Y‐complexes remains associated with mitotic ER membranes, supporting recent microscopic observations. Visualization of mitotic Y‐complexes by super‐resolution microscopy demonstrates that they form two classes of higher order assemblies: large clusters at kinetochores and small, focal ER‐associated assemblies. These, however, lack features qualifying them as persisting ring‐shaped subassemblies previously proposed to serve as structural templates for NPC reassembly during mitotic exit, which helps to refine current models of nuclear reassembly.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

EMBO

Subject

Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3