Affiliation:
1. Department of Biology, Chemistry, Pharmacy Freie Universität Berlin Berlin Germany
2. Department of Molecular Pharmacology and Cell Biology Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
Abstract
AbstractCompartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane‐bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low‐affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.
Funder
Deutsche Forschungsgemeinschaft
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献