Regulation of branched versus linear Arp2/3‐generated actin filaments

Author:

Cao Luyan12ORCID,Ghasemi Foad1ORCID,Way Michael23ORCID,Jégou Antoine1ORCID,Romet‐Lemonne Guillaume1ORCID

Affiliation:

1. Université Paris Cité, CNRS, Institut Jacques Monod Paris France

2. The Francis Crick Institute London UK

3. Department of Infectious Disease Imperial College London UK

Abstract

AbstractActivation of the Arp2/3 complex by VCA‐motif‐bearing actin nucleation‐promoting factors results in the formation of “daughter” actin filaments branching off the sides of pre‐existing “mother” filaments. Alternatively, when stimulated by SPIN90, Arp2/3 directly nucleates “linear” actin filaments. Uncovering the similarities and differences between these two mechanisms is fundamental to understanding how actin cytoskeleton dynamics are regulated. Here, analysis of individual filaments reveals that, unexpectedly, the VCA motifs of WASP, N‐WASP, and WASH destabilize existing branches, as well as SPIN90‐Arp2/3 at linear filament ends. Furthermore, branch stabilizer cortactin and destabilizer GMF each have a similar impact on SPIN90‐activated Arp2/3. However, unlike branch junctions, SPIN90‐Arp2/3 at the ends of linear filaments is not destabilized by piconewton forces and does not become less stable with time. It thus appears that linear and branched Arp2/3‐generated filaments respond similarly to the regulatory proteins we have tested, albeit with some differences, but significantly differ in their responses to aging and mechanical stress. These kinetic differences likely reflect the small conformational differences recently reported between Arp2/3 in branch junctions and linear filaments and suggest that their turnover in cells may be differently regulated.

Funder

Agence Nationale de la Recherche

Cancer Research UK

European Research Council

Horizon 2020 Framework Programme

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3