Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines

Author:

Courbon Gautier M12,Palme Paul R3,Mann Lea3,Richter Adrian3,Imming Peter3ORCID,Rubinstein John L124ORCID

Affiliation:

1. Molecular Medicine Program The Hospital for Sick Children Toronto ON Canada

2. Department of Medical Biophysics The University of Toronto Toronto ON Canada

3. Institut für Pharmazie Martin‐Luther‐Universität Halle‐Wittenberg Halle, Saale Germany

4. Department of Biochemistry The University of Toronto Toronto ON Canada

Abstract

AbstractMycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug‐resistant tuberculosis but suffers from off‐target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ‐876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ‐876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton‐conducting channel. Remarkably, BDQ, TBAJ‐876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3