Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA

Author:

Ngo Jennifer1234ORCID,Choi Dong Wook56,Stanley Illana A5,Stiles Linsey12,Molina Anthony J A7ORCID,Chen Pei‐Hsuan5,Lako Ana5,Sung Isabelle Chiao Han58ORCID,Goswami Rishov5ORCID,Kim Min‐young6,Miller Nathanael19ORCID,Baghdasarian Siyouneh1,Kim‐Vasquez Doyeon1,Jones Anthony E2ORCID,Roach Brett1,Gutierrez Vincent1,Erion Karel1,Divakaruni Ajit S2ORCID,Liesa Marc12410ORCID,Danial Nika N51112ORCID,Shirihai Orian S12ORCID

Affiliation:

1. Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology Institute UCLA CA Los Angeles USA

2. Department of Molecular and Medical Pharmacology UCLA CA Los Angeles USA

3. Department of Chemistry & Biochemistry UCLA CA Los Angeles USA

4. Molecular Biology Institute UCLA CA Los Angeles USA

5. Department of Cancer Biology, Dana‐Farber Cancer Institute Harvard Medical School MA Boston USA

6. Department of Biochemistry, College of Natural Sciences Chungnam National University Daejeon South Korea

7. Division of Geriatrics and Gerontology UCSD School of Medicine CA La Jolla USA

8. Yale‐NUS College University Town, NUS Singapore

9. Obesity Research Center, Molecular Medicine Boston University School of Medicine MA Boston USA

10. Molecular Biology Institute of Barcelona IBMB‐CSIC Barcelona Spain

11. Department of Medical Oncology, Dana‐Farber Cancer Institute Harvard Medical School MA Boston USA

12. Department of Medicine Harvard Medical School MA Boston USA

Abstract

AbstractChanges in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over‐expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type‐specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet β‐cells exposed to fatty acids, and survival of FAO‐dependent lymphoma subtypes. We find that fragmentation increases long‐chain but not short‐chain FAO, identifying carnitine O‐palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl‐CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl‐CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.

Funder

Janssen Research and Development

National Institutes of Health

Ministry of Science and ICT, South Korea

V Foundation for Cancer Research

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3