microRNAs slow translating ribosomes to prevent protein misfolding in eukaryotes

Author:

Sako Hiroaki1ORCID,Youssef Mohieldin1ORCID,Elisseeva Olga1,Akimoto Takayuki2,Suzuki Katsuhiko2ORCID,Ushida Takashi3,Yamamoto Tadashi1ORCID

Affiliation:

1. Cell Signal Unit Okinawa Institute of Science and Technology Graduate University (OIST) Okinawa Japan

2. Faculty of Sport Sciences Waseda University Saitama Japan

3. Department of Mechanical Engineering The University of Tokyo Tokyo Japan

Abstract

AbstractSlower translation rates reduce protein misfolding. Such reductions in speed can be mediated by the presence of non‐optimal codons, which allow time for proper folding to occur. Although this phenomenon is conserved from bacteria to humans, it is not known whether there are additional eukaryote‐specific mechanisms which act in the same way. MicroRNAs (miRNAs), not present in prokaryotes, target both coding sequences (CDS) and 3′ untranslated regions (UTR). Given their low suppressive efficiency, it has been unclear why miRNAs are equally likely to bind to a CDS. Here, we show that miRNAs transiently stall translating ribosomes, preventing protein misfolding with little negative effect on protein abundance. We first analyzed ribosome profiles and miRNA binding sites to examine whether miRNAs stall ribosomes. Furthermore, either global or specific miRNA deficiency accelerated ribosomes and induced aggregation of a misfolding‐prone polypeptide reporter. These defects were rescued by slowing ribosomes using non‐cleaving shRNAs as miRNA mimics. We finally show that proinsulin misfolding, associated with type II diabetes, was resolved by non‐cleaving shRNAs. Our findings provide a eukaryote‐specific mechanism of co‐translational protein folding and a previously unknown mechanism of action to target protein misfolding diseases.

Funder

Okinawa Institute of Science and Technology Graduate University

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3