Affiliation:
1. Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute Queen Mary University of London London UK
2. Institut Curie, Paris Sciences and Lettres Research University Centre National de la Recherche Scientifique, UMR144 Paris France
Abstract
AbstractIntracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post‐translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor‐mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin‐1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin‐1‐mediated transport. Depletion of α‐tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin‐1‐mediated organelle displacement to regulate intracellular organization.
Publisher
Springer Science and Business Media LLC
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献