Global histone H2B degradation regulates insulin/IGF signaling‐mediated nutrient stress

Author:

Zhu Zhiwen12345,Li Dongdong12345ORCID,Jia Zeran367,Zhang Wenhao48,Chen Yuling48,Zhao Ruixue12345ORCID,Zhang Yan‐Ping9,Zhang Wen‐Hong9,Deng Haiteng48ORCID,Li Yinqing3678,Li Wei10,Guang Shouhong11ORCID,Ou Guangshuo12345ORCID

Affiliation:

1. Tsinghua‐Peking Center for Life Sciences Tsinghua University Beijing China

2. Beijing Frontier Research Center for Biological Structure Tsinghua University Beijing China

3. IDG/McGovern Institute for Brain Research Tsinghua University Beijing China

4. School of Life Sciences Tsinghua University Beijing China

5. MOE Key Laboratory for Protein Science Tsinghua University Beijing China

6. School of Pharmaceutical Sciences Tsinghua University Beijing China

7. Center for Synthetic and Systems Biology Tsinghua University Beijing China

8. MOE Key Laboratory for Bioinformatics Tsinghua University Beijing China

9. National Institute of Biological Science Beijing China

10. School of Medicine Tsinghua University Beijing China

11. School of Life Sciences University of Science and Technology of China Hefei China

Abstract

AbstractEukaryotic organisms adapt to environmental fluctuations by altering their epigenomic landscapes and transcriptional programs. Nucleosomal histones carry vital epigenetic information and regulate gene expression, yet the mechanisms underlying chromatin‐bound histone exchange remain elusive. Here, we found that histone H2Bs are globally degraded in Caenorhabditis elegans during starvation. Our genetic screens identified mutations in ubiquitin and ubiquitin‐related enzymes that block H2B degradation in starved animals, identifying lysine 31 as the crucial residue for chromatin‐bound H2B ubiquitination and elimination. Retention of aberrant nucleosomal H2B increased the association of the FOXO transcription factor DAF‐16 with chromatin, generating an ectopic gene expression profile detrimental to animal viability when insulin/IGF signaling was reduced in well‐fed animals. Furthermore, we show that the ubiquitin‐proteasome system regulates chromosomal histone turnover in human cells. During larval development, C. elegans epidermal cells undergo H2B turnover after fusing with the epithelial syncytium. Thus, histone degradation may be a widespread mechanism governing dynamic changes of the epigenome.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3