Affiliation:
1. The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
3. Institute of Environment and Health, Institute for Advanced Study UCAS Hangzhou China
4. Shenzhen Center for Disease Control and Prevention Shenzhen China
Abstract
AbstractIntracellular decay of N6‐methyladenine (m6A)‐containing RNA potentially induces aberrant N6‐methyl‐2′‐adenine (6mdA) misincorporation into DNA. Biophysically, misincorporated 6mdA may destabilize the DNA duplex in a manner similar to bona fide methylated 6mdA DNA, thereby affecting DNA replication and transcription. Utilizing heavy stable isotope labeling and ultrasensitive UHPLC–MS/MS assay, we demonstrate that intracellular m6A‐RNA decay does not generate free 6mdA species, nor lead to any misincorporated DNA 6mdA in most mammalian cell lines tested, unveiling the existence of a sanitation mechanism that prevents 6mdA misincorporation. Depletion of deaminase ADAL increases the levels of free 6mdA species, concomitant with the presence of DNA‐misincorporated 6mdA resulting from intracellular RNA m6A decay, suggesting that ADAL catabolizes 6mdAMP in vivo. Furthermore, we show that the overexpression of adenylate kinase 1 (AK1) promotes 6mdA misincorporation, while AK1 knockdown diminishes 6mdA incorporation, in ADAL‐deficient cells. We conclude that ADAL together with other factors (such as MTH1) contributes to 2′‐deoxynucleotide pool sanitation in most cells but compromised sanitation (e.g., in NIH3T3 cells) and increased AK1 expression may facilitate aberrant 6mdA incorporation. This sanitation mechanism may provide a framework for the maintenance of the epigenetic 6mdA landscape.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献