Affiliation:
1. Laboratory of Systems Pharmacology Harvard Medical School Boston MA USA
2. Department of Systems Biology Harvard Medical School Boston MA USA
Abstract
AbstractThe analysis of omic data depends on machine‐readable information about protein interactions, modifications, and activities as found in protein interaction networks, databases of post‐translational modifications, and curated models of gene and protein function. These resources typically depend heavily on human curation. Natural language processing systems that read the primary literature have the potential to substantially extend knowledge resources while reducing the burden on human curators. However, machine‐reading systems are limited by high error rates and commonly generate fragmentary and redundant information. Here, we describe an approach to precisely assemble molecular mechanisms at scale using multiple natural language processing systems and the Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies full and partial overlaps in information extracted from published papers and pathway databases, uses predictive models to improve the reliability of machine reading, and thereby assembles individual pieces of information into non‐redundant and broadly usable mechanistic knowledge. Using INDRA to create high‐quality corpora of causal knowledge we show it is possible to extend protein–protein interaction databases and explain co‐dependencies in the Cancer Dependency Map.
Funder
National Cancer Institute
Defense Advanced Research Projects Agency
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Information Systems
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献