Development and use of machine learning models for prediction of male sling success

Author:

Kim Jin K.,McCammon Kurt A.,Kim Kellie J.,Rickard Mandy,Lorenzo Armando J.,Chua Michael E.

Abstract

Introduction: For mild to moderate male stress urinary incontinence (SUI), transobturator male slings remain an effective option for management. We aim to use a machine learning (ML)-based model to predict those who will have a long-term success in managing SUI with male sling. Methods: All transobturator male sling cases from August 2006 to June 2012 by a single surgeon were reviewed. Outcome of interest was defined as ‘cure’: complete dryness with 0 pads used, without the need for additional procedures. Clinical variables included in ML models were: number of pads used daily, age, height, weight, race, incontinence type, etiology of incontinence, history of radiation, smoking, bladder neck contracture, and prostatectomy. Model performance was assessed using AUROC, AUPRC, and F1-score. Results: A total of 181 patients were included in the model. The mean followup was 56.4 months (standard deviation [SD] 41.6). Slightly more than half (53.6%, 97/181) of patients had procedural success. Logistic regression, K-nearest neighbor (KNN), naive Bayes, decision tree, and random forest models were developed using ML. KNN model had the best performance, with AUROC of 0.759, AUPRC of 0.916, and F1-score of 0.833. Following ensemble learning with bagging and calibration, KNN model was further improved, with AUROC of 0.821, AUPRC of 0.921, and F-1 score of 0.848. Conclusions: ML-based prediction of long-term transobturator male sling is feasible. The low numbers of patients used to develop the model prompt further validation and development of the model but may serve as a decision-making aid for practitioners in the future.

Publisher

Canadian Urological Association Journal

Subject

Urology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3