Choosing the right strategy to model longitudinal count data in Epidemiology: An application with CD4 cell counts

Author:

De Brito Trindade Daniele,Ospina Raydonal,Amorim Leila D.

Abstract

Background: Statistical models for analysis of correlated count data are important for answering epidemiological questions that involve taking individual count measurements repeatedly over time through the use of longitudinal studies. Conventional regression models for this type of data are inadequate, leading to improper conclusions and inference. An important application of longitudinal studies in Public Health is the evaluation and monitoring of patients with infectious diseases, such as HIV/AIDS, to determine their health status, to verify the treatment effects, and to make prognosis concerning the evolution of the disease, including interdependencies of clinical manifestations. The purpose of this article is to characterize different statistical strategies for analysis of longitudinal count data, emphasizing how to choose the most suitable model for the data and how to interpret the results. Methods:We illustrate their applicability by evaluating the effect of associated factors on lymphocyte CD4+T cell count in HIV seropositive patients in Salvador/Bahia - Brazil. We describe Poisson and Negative Binomial models using multilevel (ML) approach and generalized estimations equations (GEE) for analysis of longitudinal count data. Results: It is worth noting that the interpretation of the results from ML and GEE differs and they should not be compared directly. Conclusion: We believe that the statistical methodology for analysis of longitudinal studies with correlated count data can be useful to address several important questions in public health, particularly by helping to monitor patients and checking the effectiveness of treatments.

Publisher

Milano University Press

Subject

Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3