Author:
Bottai Matteo,Zhen Huiling
Abstract
Multiple imputation is a simulation-based approach for the analysis of data with missing observations. It is widely utilized in many set- tings and preeminent among general approaches when the analytical method does not involve a likelihood function or this is too complex. We consider a multiple imputation method based on the estimation of conditional quantiles of missing observations given the observed data. The method does not require modeling a likelihood and has desirable features that may be useful in some practical settings. It can also be applied to impute dependent, bounded, censored and count data. In a simulation study it shows some advantage over the alternative meth- ods considered in terms of mean squared error across all scenarios except when the data arise from a normal distribution where all meth- ods considered perform equally well. We present an application to the estimation of percentiles of body mass index conditional on physical activity assessed by accelerometers.
Subject
Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献