Author:
Sokouti Massoud,Sadeghi Ramin, Ramin,Pashazadeh Saeid,Abadi Saeid Eslami Hasan,Sokouti Mohsen,Ghojazadeh Morteza,Sokouti Babak
Abstract
ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2020, Volume 17, Number 2Investigation of diagnostic value of artificial intelligence systems in the diagnosis of breast cancer based on histopathological images using Meta-MUMS DTA toolInvestigation of diagnostic value of artificialintelligence systems in the diagnosis of breastcancer based on histopathological imagesusing Meta-MUMS DTA toolABSTRACTBackground: Various artificial intelligence systems are available for diagnosing breast cancer based onhistopathological images. Assessing the performance of existing methodologies for breast cancer diagnosis is vital.Methods: The SCOPUS database has been searched for studies up to December 15, 2018. We extracted the data,including "true positive," "true negative," "false positive," and "false negative". The pooled sensitivity, pooled specificity,positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, area under the curve of summary receiveroperating characteristic curve were useful in assessing the diagnostic accuracy. Egger's test, Deeks' funnel plot, SVE(Smoothed Variance regression model based on Egger’s test), SVT (Smoothed Variance regression model based onThompson’s method), and trim and fill methodologies were essential tests for publication bias identification.Results: Three studies with eight approaches from thirty-seven articles were found eligible for further analysis. Asensitivity of 0.95, a specificity of 0.78, a PLR of 7525, an NLR of 0.06, a DOR of 88.15, and an AUC of 0.953showed high significant heterogeneity; however, the reason was not the threshold effect. The publication bias wasdetected by SVE, SVT, and trim and fill analysis.Conclusion: The artificial intelligent (AI) systems play a pivotal role in the diagnosis of breast cancer usinghistopathological cell images and are important decision-makers for pathologists. The analyses revealed that theoverall accuracy of AI systems is promising for breast cancer; however, the pooled specificity is lower than pooledsensitivity. Moreover, the approval of the results awaits conducting randomized clinical trials with sufficient data
Subject
Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploration of cervical cancer image processing technology based on deep learning;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13