Clinical implications, safety, efficacy of Recombinant Human Granulocyte Colony-Stimulating Factors and Pegylated Equivalent

Author:

Bolis Silvia,Cocorocchio Emilia,Corti Consuelo,Ferreri Andrés J. M.,Frungillo Niccolò,Grillo Giovanni,Salè Omode Emanuela,Tedeschi Lucilla,Zilioli Vittorio Ruggero

Abstract

A wide use of recombinant human granulocyte colony-stimulating factors (G-CSFs) and their pegylated equivalent is a significant step forward in the treatment of both solid tumors and hematological malignancies. Evidence-based use of these molecules resulted in more intensive treatments, safely extended to frail and elderly patients, and development of response- and comorbidity-tailored approaches. The available G-CSFs are filgrastim, and the long-acting PegFilgrastim, which are produced in E. Coli cells, and are chemically different from native human G-CSF, and lenograstim, a molecule produced in mammalian cells, with a chemical structure identical to native human G-CSF. These chemical differences produce a diverse interaction with receptors and stimulated neutrophils. For instance, lenograstim binds to receptors in the same way of endogenous ligand, and neutrophils obtained from stimulation with this G-CSF have a physiological activity profile similar to neutrophils normally generated in humans. Conversely, the different interaction between filgrastim and G-CSF receptor is more frequently associated with morphological abnormalities, reduced motility and chemotaxis and a reduced response to bacterial stimuli in induced neutrophils. On this background, we reviewed available evidence in order to analyze the impact of these chemical and pharmacodynamic differences among G-CSF molecules on safety, particularly in healthy peripheral-blood stem-cells donors, functional qualities of inducted neutrophils, and mobilization of hematopoietic stem cells. 

Publisher

Milano University Press

Subject

Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Based Optimal AML Consolidation Treatment;IEEE Transactions on Biomedical Engineering;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3