Handling missing continuous outcome data in a Bayesian network meta-analysis

Author:

Azzolina Danila,Baldi IleanaORCID,Minto Clara,Bottigliengo Daniele,Lorenzoni Giulia,Gregori Dario

Abstract

Background: A Bayesian network meta-analysis (NMA) model is a statistical method aimed at estimating the relative effects of multiple interventions against the same disease. The method has recently gained prominence, leading to the synthesis of the evidence regarding rank probabilities for each treatment. In several cases, an NMA is performed excluding incomplete data of studies retrieved through a systematic review, resulting in a loss of precision and power.  Methods: There are several methods for handling missing or incomplete data in an NMA framework, especially for continuous outcomes. In certain cases, only baseline and follow-up measurements are available; in this framework, to obtain data regarding mean changes, it is necessary to consider the pre-post study correlation. In this context, in a Bayesian setting, several authors suggest imputation strategies for pre-post correlation. In other cases, a variability measure associated with a mean change score might be unavailable. Different imputation methods have been suggested, such as those based on maximum standard deviation imputation. The purpose of this study is to verify the robustness of Bayesian NMA models concerning different imputation strategies through simulations.  Results: Simulation results show that the bias is notably small for every scenario, confirming that rankings provided by models are robust concerning different imputation methods in several heterogeneity-correlation settings.  Conclusions: This NMA method seems to be more robust to missing data imputation when data reported in different studies are generated in a low-heterogeneity scenario. The NMA method seems to be more robust to missing value imputation if the expectation of the prior distribution, defined on the heterogeneity parameter, approaches the true value of the variability across studies. 

Publisher

Milano University Press

Subject

Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3