Discovering potential blood-based cytokine biomarkers for Alzheimer’s disease using Firth Logistic Regression

Author:

Abdullah Mohammad Nasir,Wah Yap Bee,Zakaria Yuslina,Majeed Abu Bakar Abdul,Huat Ong Seng

Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder where patients suffer from memory loss, cognitive impairment and progressive disability. Individual blood biomarkers have not been successful in defining the disease pathology, progression and diagnosis of AD. There is a need to identify multiplex panels of blood biomarkers for early diagnosis of AD with high sensitivity and specificity. This study focused on identification of cytokine biomarkers. The maximum likelihood estimates of the ordinary logistic regression model cannot be obtained when there is complete separation and the alternative is Firth logistic regression which uses a penalised Maximum Likelihood in parameter estimation.  Methods: This paper reports a Firth logistic regression application in finding potential blood-based cytokine biomarkers for Alzheimer’s disease in a matched case control study. We used a principle component analysis to discriminate the correlated, completely separated covariates.  Results: The Firth logistic regression results showed that nine individual biomarkers IL-1β, IL-6, IL-12, IFN-γ, IL-10, IL-13, IP-10, MCP-1 and MIP-1α had a significant relationshipwith elevated risk for AD as compared to the healthy control (HC). Principal component analysis with varimax rotation for the nine biomarkers revealed four factors (total variance explained=85.5%). The main principal component biomarkers were IL-1β, IL-6, IL-13 and MCP-1 (total variance explained=62.3%). Firth’s logistic regression model with the first principal component had accuracy of 78.2% with sensitivity and specificity of 71.8% and 75% respectively.  Conclusion: Firth’s logistic regression is a useful technique in identification of significant biomarkers when there is an issue of data separation. 

Publisher

Milano University Press

Subject

Public Health, Environmental and Occupational Health,Community and Home Care,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3