A Method Based on Process Mining for Breast Cancer Diagnosis with Whale Optimization Algorithm and Support Vector Machine

Author:

Abstract

ABSTRACT Breast cancer is the second most common cancer among women and the second leading cause of death in the world. According to the statistics of the National Cancer Center, one out of every eight women in the United States is diagnosed with breast cancer. This cancer is the most common malignancy among Iranian women and the main focus of attention in Iran. The data shows that in recent years, the prevalence of the disease has been growing. All tumors are not cancerous and may be benign or malignant. Benign tumors grow abnormally but are rarely fatal. However, some benign breast masses can also increase the risk of breast cancer. The process mining is one of the methods used to diagnose or predict cancers. This method is one of the most popular approaches to breast cancer diagnosis. Process mining approaches can help doctors in better detection of breast cancer by reducing the number of false positive and negative results. The whale optimization algorithm is one of the new meta-heuristic algorithms and imitates the behavior of whale hunting. This algorithm starts with a set of random solutions, in each iteration the search agents update their position according to each of the search agents randomly or with the best solution obtained so far. In this research, using the whale algorithm method, a method to reduce cancer diagnosis error in a number of patients with 9 types of contamination has been investigated and presented. Therefore, in this research, with the help of MATLAB software and using the advantages of whale algorithm optimization, this number of diseases has been categorized, as a result of which the diagnosis error is reduced.

Publisher

Universe Publishing Group - UniversePG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3