Detection and Implementation of Blood Group and Hb Level by Image Processing Techniques

Author:

Abstract

In an emergency, an urgent blood transfusion from a person to the patient is required and blood group identification is the first process to do so. In addition, a hemoglobin test is often required to make decisions about blood transfusion as well as to check anemia. Hemoglobin testing is also required for complete blood count and monitoring a number of diseases. These blood tests are almost difficult in rural areas where lab facilities are not sufficient. Researchers proposed a number of methods to identify blood groups using computer vision techniques. However, no study was conducted to identify blood group and hemoglobin level in a work using image processing techniques and an android mobile application which shows high detection accuracy. In this paper, manual clinical experiments have been replaced by an android app using image processing techniques to detect blood groups and hemoglobin levels except users require using antigen before taking samples. The proposed technique is divided into two portions. The first portion is blood group detection, which is done by taking a blood sample and performing the grayscale conversion, binary conversion, segmentation, edge detection, and computation to make the decision. The second section describes how to determine hemoglobin levels by comparing a blood sample image to a hemoglobin color scale (HCS). Here, the Hemoglobin value is determined from their RGB values. It has been discovered that the proposed approaches are capable of detecting hemoglobin levels and blood groups in a cost-effective and error-free manner. As a result, the tests can be conducted in a remote area without adequate lab facilities and the proposed work can solve major steps in blood transfusion difficulties and anemia.

Publisher

Universe Publishing Group - UniversePG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Procedure to Identify Human Blood Groups by using Image Processing Assisted Learning Principle;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

2. Proposing a Continuous Spectral-Spatial Sparse Representation Model for Denoising Hyperspectral Images;International Journal of Material and Mathematical Sciences;2023-02-28

3. A Comprehensive Review on the Diabetic Retinopathy, Glaucoma and Strabismus Detection Techniques Based on Machine Learning and Deep Learning;European Journal of Medical and Health Sciences;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3