A Study on the Carbonation Rate of Concrete Exposed in Different Climatic Conditions

Author:

Abstract

Recently, the degradation of concrete has become a serious problem worldwide and one of the principle factors of degradation is the carbonation process. It is well established that environmental conditions affect the carbonation progress of concrete among the most important factors that can greatly affect the carbonation resistance of concrete are relative humidity (RH) and temperature. Carbonation has become a threat to concrete structures, especially in urban and industrial areas. Thus, it is necessary to have a proper design to maintain the structure's stability against degradation caused by carbonation. Therefore, this study was conducted to evaluate the effects of different environmental and climatic conditions on the carbonation rate of concrete. The specimens were prepared using OPC and fly ash (FA). After 28 days of air curing, specimens were exposed to different climate conditions under sheltered and un-sheltered conditions. The carbonation tests were conducted at the ages of 6 and 12 months. It was found that the carbonation rates were significantly influenced by the climate and environmental conditions; the specimens exposed to a relatively dry environment and low annual precipitations have shown higher carbonation during one-year exposure. Moreover, in unsheltered conditions, the annual precipitation significantly affects the carbonation rate of concrete. Furthermore, it was observed that a 20% replacement of FA does not enhance the carbonation resistance of concrete.

Publisher

Universe Publishing Group - UniversePG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dielectric Relaxation and Thermal Stability of Epoxy/Polyurethane -Carbon Nanofiber Composites;International Journal of Material and Mathematical Sciences;2024-05-01

2. Study on the Effect of OPC and PCC on the Properties of Concrete;Australian Journal of Engineering and Innovative Technology;2023-11-27

3. Chemical Attack on Concrete in Wastewater Treatment Plant: A Review;Australian Journal of Engineering and Innovative Technology;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3