Magnetohydrodynamic Effects on the Flow of Nanofluids Across a Convectively Heated Inclined Plate Through a Porous Medium with a Convective Boundary Layer

Author:

Abstract

The study explores the problem of Magnetohydrodynamic natural convection boundary layer flow of a nanofluid past a convectively heated inclined porous channel. The governing partial differential equations have been transformed through appropriate similarity functions into nonlinear ordinary differential equations. The emerging equations were solved numerically using both a sixth-order Runge-Kutta-Fehlberg and the shooting technique. The influences of pertinent parameters such as plate inclination angle, magnetic field, buoyancy ratio, and the convective heating term on the temperature, velocity, and concentration profiles were investigated graphically. Key findings indicate that an increase in magnetic field and permeability leads to a decline in the fluid’s velocity while the temperature and nanoparticle concentration are significantly enhanced. The results obtained are in close correlation with existing body of knowledge discussed in the literature.

Publisher

Universe Publishing Group - UniversePG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3