A Comparative Study on Classical Fourth Order and Butcher Sixth Order Runge-Kutta Methods with Initial and Boundary Value Problems

Author:

Abstract

In this paper, it is discussed about Runge-Kutta fourth-order method and Butcher Sixth order Runge-Kutta method for approximating a numerical solution of higher-order initial value and boundary value ordinary differential equations. The proposed methods are most efficient and extolled practically for solving these problems arising indifferent sector of science and engineering. Also, the shooting method is applied to convert the boundary value problems to initial value problems. Illustrative examples are provided to verify the accuracy of the numerical outcome and compared the approximated result with the exact result. The approximated results are found in good agreement with the result of the exact solution and firstly converge to more accuracy in the solution when step size is very small. Finally, the error with different step sizes is analyzed and compared to these two methods.

Publisher

Universe Publishing Group - UniversePG

Reference38 articles.

1. Ababneh, O.Y., Ahmad, R. and Ismail, E.S. (2009). New multi-step Runge-Kutta method. Appl. Mathematical Sciences, 3(45), 2255-2262.

2. http://www.m-hikari.com/ams/ams-password-2009/ ams-password45-48-2009/ababnehAMS45-48-200 9-2.pdf

3. Ademiluyi, R.A., Babatola, P.O. and Kayode, S.J. (2001). Semi implicit Rational Runge-Kutta formulas of approximation of stiff initial value problems in ODEs. Journal of Mathematical Science and Education, 3, pp.1-25.

4. Agam, S.A. and Yahaya, Y.A. (2014). A highly efficient implicit Runge-Kutta method for first order ordinary differential equations. African j. of mathematics and Computer Science Research, 7(5), pp.55-60. https://academicjournals.org/journal/AJMCSR/article-abstract/9D7ECC646284

5. Ahmed M, and Iqbal MA. (2020). An execution of a mathematical example using Euler’s Phi-function in Hill Chiper cryptosystem, Int. J. Mat. Math. Sci., 2(6), 99-103.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3