Studying the innovative development of regional economy as an imperative of sustainable socio-economic growth in Russia, using neural network modeling

Author:

LYUBUSHIN Nikolai P.1ORCID,LETYAGINA Elena N.2,PEROVA Valentina I.2

Affiliation:

1. Voronezh State University (VSU)

2. National Research Lobachevsky State University of Nizhny Novgorod (UNN)

Abstract

Subject. The article deals with the innovative potential of Russian regions in light of the national goal of the Russian Federation development, reflecting decent and productive work. Objectives. The purpose is to study the innovation activity in Russian regions, using neural networks, to ensure breakthrough innovative development of the Russian economy. Methods. We employ a cluster analysis on the basis of neural network modeling, using information technologies. For the research, we selected neural networks (Kohonen self-organizing maps), which are focused on unsupervised learning and are a promising tool for clustering and visualization of multidimensional statistical data. Results. The result of neural network modeling was the ranking of 85 regions of the Russian Federation into 5 compact groups (clusters) regardless of their affiliation to federal districts of the Russian Federation. The study shows that there is a strong differentiation of the number of regions in these clusters. We obtained average values of indicators in the clusters and compared them with all-Russian indicators. Conclusions. Breakthrough in the socio-economic growth of the Russian Federation is associated with a set of measures that involve stimulating innovation activities in regions, which are characterized by different level of innovation development. Such measures will increase the interest of the real sector of the economy in using scientific development, advanced production technologies, higher-productivity employment opportunities, and, as a result, will encourage socio-economic growth and people's quality of life.

Publisher

Publishing House Finance and Credit

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3