Genetic algorithms as a tool for the formation and evolution of trading strategies in the securities market

Author:

ALIEV Beilak N.1ORCID

Affiliation:

1. Lomonosov Moscow State University (Lomonosov MSU)

Abstract

Subject. This article deals with the tools for the formation and evolution of trading strategies in the securities market. Objectives. The article aims to develop a mathematical framework and a formalized algorithm for the formation and evolution of trading strategies in the securities market. Methods. For the study, I used a genetic algorithm as an evolutionary optimization model. Results. The article presents an original mathematical description of a tool for the formation and evolution of strategies using genetic algorithms and a formalized algorithm sufficient for implementation in general-purpose programming languages. Conclusions and Relevance. The results obtained are the basis for further research in the field of autonomous evolution of trading strategies, and the described models will allow further research on the basis of specific software tools. The work is of practical value for private and institutional investors, for whom the trading strategy in the securities market is one of the fundamental aspects of their activities.

Publisher

Publishing House Finance and Credit

Reference15 articles.

1. Mel'nikova L.F., Chadrantseva O.V. [Trading system and investment qualities of securities]. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 2012, no. 4, pp. 79–80. URL: Link (In Russ.)

2. Vygodchikova I.Yu., Gusyatnikov V.N., Nosova E.G. [Navigating the securities market with the help of macd indicator and minimax approximation criteria]. Promyshlennost': ekonomika, upravlenie, tekhnologii = Industry: Economics, Managment, Technology, 2019, no. 2, pp. 157–160. URL: Link (In Russ.)

3. Dombrovskii V.V., Dombrovskii D.V., Lyashenko E.A. [Robust control of financial assets with stochastic volatility under transaction costs]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika, 2007, no. 1, pp. 8–14. URL: Link (In Russ.)

4. Dombrovskii V.V., Larina T.M. [Predictive control strategies for investment portfolio subject to constraints and trading costs]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika, 2016, no. 2, pp. 4–12. URL: Link (In Russ.)

5. Kudryavtsev O.E., Mozolev K.I., Rodochenko V.V., Shramko D.A. [An analysis of the effectiveness of trend-following strategies on the Moscow Stock Exchange using machine learning methods]. Ekonomika i predprinimatel'stvo = Journal of Economy and Entrepreneurship, 2016, no. 12-2, pp. 684–692. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3