Application of data mining to understand some factors that influence student dropout

Author:

Carrasco Vega Yajaira Lizeth1ORCID,Carril-Verastegui Benjamín David2ORCID

Affiliation:

1. Universidad Nacional de Canete. Canete, Peru.

2. Universidad Nacional de Trujillo. Trujillo, Peru.

Abstract

The research aims to identify applying data mining to identify the main factors that influence the dropout of university students in public universities in Latin America. A documentary analysis was carried out to contextualize the problem of student desertion, and relevant antecedents on the subject were presented. The study's main findings identified that socioeconomic problems, institutional conditions, and social and cultural environment situations are the main factors influencing student dropout in public universities in Latin America. Finally, it is possible to affirm that data mining is helpful for different engineering applications that contribute to the attention of social problems.

Publisher

AutanaBooks S.A.S

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference12 articles.

1. [1] R. Agarwal and R. Shankar, "Predicting Student Dropout in Higher Education using Machine Learning Techniques.," International Journal of Computer Applications, vol. 179, no. 35, pp. 16-21, 2021.

2. [2] M. Alzahrani and A. Alharthi, "Predicting student dropout in higher education using decision tree and logistic regression. " Journal of Computational Science, vol. 42, p. 101148., 2020.

3. [3] Y. Zou, Q. Liu, Y. Liu, and Y. Peng, "A predictive model for student dropout risk in higher education: A comparative study of feature selection and classification algorithms. " Journal of Educational Computing Research, vol. 59, no. 2, pp. 238-262.

4. [4] M. Fernández-Diego, I. García-García and J. García-Sánchez, "The Use of Data Mining Techniques to Analyze Student Dropout in Higher Education.," Sustainability, vol. 13, no. 10, p. 5689, 2021.

5. [5] M. Montoya-Valdez, M. Gutiérrez-Martínez and O. Medina-Ramírez, "Análisis de factores de deserción estudiantil en educación superior mediante técnicas de minería de datos.," Revista Electrónica Educare, vol. 25, no. 1, pp. 1-20. , 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3