Model-based Analysis of Nitrogen Dynamics in the Tigris River in Baghdad City

Author:

Al Lami Muwafaq H., ,Alwan Imzahim A.,Ismael Hameed S., ,

Abstract

Developing a solid understanding of the nitrogen dynamics across the Tigris River is critical to evaluate the environmental degradation of the increased N fluxes. Nitrite, nitrate, and total oxidized N (nitrite+nitrate) were monitored from April 2018 to August 2019. Plug flow reactors and continuously stirred tank reactors in series models were implemented to explore N behavior in the river system. The results indicated that the total oxidized N decreased over the first half of the study period, then was followed by a high rate of nitrate production. These findings are also supported by changes of the river flow rates, dissolved oxygen, pH, and chemical oxygen demand. The models have the capacity to simulate N dynamics, with varied prediction errors. Root mean squared errors between measured and predicted nitrite, nitrate, and total oxidized N concentrations were 0.118, 2.595, and 2.560 g m-3, respectively, for the PFR model, while these values were 0.05, 0.175 g m-3, and 0.176 g m-3, respectively, for the CSTRS model. The correlation coefficients were 0.012, 0.925, and 0.922 for nitrite, nitrate, and total oxidized N, respectively, when the PFR model was applied. These values were 0.92, 0.99, and 0.99, respectively, after the application of the CSTRS model. Obtained results revealed that the modeling approach can provide a useful framework to improve understanding of N dynamics, which helps to develop mitigation strategies for sustaining water quality in the Tigris River.

Publisher

Computational Hydraulics International

Subject

Water Science and Technology,Geography, Planning and Development,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3