Long Memory, Time Trends, and the Degree of Persistence in Water Temperatures of Five European Rivers and Lakes

Author:

Gil-Alana Luis A., ,González-Blanch María Jesús,Lafuente Carmen,Nõges Tiina,Pulkkanen Merja, , , ,

Abstract

This paper uses long memory and fractional integration techniques to analyze the presence of time trends in the water temperatures of three large European rivers (the Rhine at Lobith, the Danube at Wienna, the Meuse at Eijsden) and two lakes (Saimaa in Finland, and Võrtsjärv in Estonia). Long memory is a feature frequently observed in hydrological data, and it is important to consider it to appropriately estimate the potential trends in the data. The results indicate the existence of significant positive trends in all the five series examined, possibly as a consequence of global warming. Interestingly, once the time trends are taken into consideration, the degree of persistence substantially decreases in all cases and the long memory property in the data disappears.

Publisher

Computational Hydraulics International

Subject

Water Science and Technology,Geography, Planning and Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3