The Moisture Content and Absorption Levels of Carbon Dioxide in Binuang Bini (Octomeles sumatrana Miq) Trees For Climate Change Management

Author:

Kailola J,Mardiatmoko G,Simanjuntak R,Kastanya A

Abstract

Binuang bini (Octomeles sumatrana Miq) is a fast-growing tree with numerous economic benefits, such as the provision of wood for carpentry purposes, building boards, water management, and absorption of carbon dioxide (CO2). Therefore, this tree species has great potential and needs to be included in Reducing Emission from Deforestation and Forest Degradation (REDD)+'s mitigation program to tackle climate change. In its development, REDD+ has made it possible to carry out carbon trading in the world. Therefore, countries capable of performing protective functions and carry out reforestation, afforestation, and restoration, have the opportunity to be involved in world carbon trading. This study aims to determine the moisture content and carbon absorption rate of Binuang bini trees as a first step to regulate the allometric equation using destructive and laboratory analysis. The results show that the water content in the roots, leaves, as well as the base, middle, and tip of the stem were: 73.69%, 68.39%, 65.59%, 61.22%, and 66.26%, respectively. Furthermore, the sample test results indicate a very close relationship between carbon concentration and absorbance in the O. sumatrana tree with a simple linear regression equation: Y = 0.002X + 0.0593 with R2 = 0.9896. Therefore, this regression equation can be used to calculate the carbon concentration sample for the O. sumatrana tree fraction. The carbon content in 3 tree samples with a breast height diameter of 9.24 cm, 10.08 cm, and 11.68 cm was 2,585 kg. 2,913 kg, and 4,654 kg, respectively. In addition, the carbon sequestration for each tree diameter per year is 1.581 kg year-1, 1,782 kg year-1and 2,847 kg year-1, respectively.

Publisher

Department of Forest Management

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3