Exploration of Cross-Border Language Planning Using the Graph Neural Network for Internet of Things-Native Data

Author:

Long Juan1ORCID

Affiliation:

1. School of Humanities, Hunan City University, Yiyang 413000, Hunan, China

Abstract

This work aims to study applying the graph neural network (GNN) in cross-border language planning (CBLP). Consequently, following a review of the connotation of GNN, it puts forward the research method for CBLP based on the Internet of Things (IoT)-native data and studies the classification of language texts utilizing different types of GNNs. Firstly, the isomorphic label-embedded graph convolution network (GCN) is proposed. Then, it proposes a scalability-enhanced heterogeneous GCN. Subsequently, the two GCN models are fused, and the research model-heterogeneous InducGCN is proposed. Finally, the model performances are comparatively analyzed. The experimental findings suggest that the classification accuracy of label-embedded GNN is higher than that of other methods, with the highest recognition accuracy of 97.37% on dataset R8. The classification accuracy of the proposed heterogeneous InducGCN fusion model has been improved by 0.09% more than the label-embedded GNN, reaching 97.46%.

Funder

Hunan Social Science Achievement Evaluation Committee

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference23 articles.

1. Parameterized explainer for graph neural network;D. Luo;Advances in Neural Information Processing Systems,2020

2. A Deep Graph Neural Network-Based Mechanism for Social Recommendations

3. Cross-scale internal graph neural network for image super-resolution;S. Zhou;Advances in Neural Information Processing Systems,2020

4. Deep Graph neural network-based spammer detection under the perspective of heterogeneous cyberspace

5. Rumor detection based on propagation graph neural network with attention mechanism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3