An Interoperability Platform Enabling Reuse of Electronic Health Records for Signal Verification Studies

Author:

Yuksel Mustafa1,Gonul Suat12,Laleci Erturkmen Gokce Banu1,Sinaci Ali Anil1,Invernizzi Paolo3,Facchinetti Sara3,Migliavacca Andrea3,Bergvall Tomas4,Depraetere Kristof5,De Roo Jos5

Affiliation:

1. SRDC Software Research & Development and Consultancy Ltd., 06800 Ankara, Turkey

2. Department of Computer Engineering, Middle East Technical University, 06800 Ankara, Turkey

3. Lombardia Informatica S.p.A., Via Torquato Taramelli, 26 20124 Milano, Italy

4. WHO Collaborating Centre for International Drug Monitoring, Uppsala Monitoring Centre (UMC), 753 20 Uppsala, Sweden

5. Advanced Clinical Applications Research Group, Agfa HealthCare, 9000 Gent, Belgium

Abstract

Depending mostly on voluntarily sent spontaneous reports, pharmacovigilance studies are hampered by low quantity and quality of patient data. Our objective is to improve postmarket safety studies by enabling safety analysts to seamlessly access a wide range of EHR sources for collecting deidentified medical data sets of selected patient populations and tracing the reported incidents back to original EHRs. We have developed an ontological framework where EHR sources and target clinical research systems can continue using their own local data models, interfaces, and terminology systems, while structural interoperability and Semantic Interoperability are handled through rule-based reasoning on formal representations of different models and terminology systems maintained in the SALUS Semantic Resource Set. SALUS Common Information Model at the core of this set acts as the common mediator. We demonstrate the capabilities of our framework through one of the SALUS safety analysis tools, namely, the Case Series Characterization Tool, which have been deployed on top of regional EHR Data Warehouse of the Lombardy Region containing about 1 billion records from 16 million patients and validated by several pharmacovigilance researchers with real-life cases. The results confirm significant improvements in signal detection and evaluation compared to traditional methods with the missing background information.

Funder

Seventh Framework Programme

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3