Antenna Optimization Based on Auto-Context Broad Learning System

Author:

Ding Wei-Tong1ORCID,Meng Fei2ORCID,Tian Yu-Bo2ORCID,Yuan Hui-Ning1ORCID

Affiliation:

1. School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China

2. School of Information and Communication Engineering, Guangzhou Maritime University, Guangzhou 510725, Guangdong, China

Abstract

To enhance the efficiency of antenna optimization, surrogate model methods can usually be used to replace the full-wave electromagnetic simulation software. Broad learning system (BLS), as an emerging network with strong extraction ability and remarkable computational efficiency, has revolutionized the conventional artificial intelligence (AI) methods and overcome the shortcoming of excessive time-consuming training process in deep learning (DL). However, it is difficult to model the regression relationship between input and output variables in the electromagnetic field with the unsatisfactory fitting capability of the original BLS. In order to further improve the performance of the model and speed up the design of microwave components to achieve more accurate prediction of hard-to-measure quality variables through easy-to-measure parameter variables, the conception of auto-context (AC) for the regression scenario is proposed in this paper, using the current BLS training results as the prior knowledge, which are taken as the context information and combined with the original inputs as new inputs for further training. Based on the previous prediction results, AC learns an iterated low-level and context model and then iterates to approach the ground truth, which is very general and easy to implement. Three antenna examples, including rectangular microstrip antenna (RMSA), circular MSA (CMSA), and printed dipole antenna (PDA), and 10 UCI regression datasets are employed to verify the effectiveness of the proposed model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3