MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis

Author:

Ge Yi1,Liu Lishi1ORCID,Luo Liang1,Fang Yu1,Ni Tong1

Affiliation:

1. Department of Intensive Care Unit, Wuxi Second People's Hospital, Wuxi, 214000 Jiangsu, China

Abstract

Reperfusion therapy, the standard treatment for acute myocardial infarction (MI), can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, molecular mechanisms that regulate cardiomyocyte death remain largely unknown. The abnormal expression of lncRNA MIR22HG has been found in types of diseases. The current study was aimed at exploring the function and mechanism of MIR22HG in I/R injury. In this study, mouse myocardial cells (HL-1) treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used as the in vitro models, and myocardial ischemia reperfusion injury (MIRI) animal models in vivo were established in male C57BL/6 mice. Experiments including CCK-8, flow cytometry, TUNEL, HE staining, RT-qPCR, western blotting, and luciferase reporter assays were performed to explore the function and potential mechanism of MIR22HG in MIRI in vitro and in vivo. Bioinformatics analysis was performed to predict the binding site between miR-9-3p and MIR22HG (or SH2B3). Our results indicated that the MIR22HG level was upregulated in cardiomyocytes after OGD/R treatment. The knockdown of MIR22HG promoted cell viability and inhibited apoptosis and extracellular matrix (ECM) production in OGD/R-treated HL-1 cells. In mechanism, MIR22HG binds to miR-9-3p, and miR-9-3p targets the SH2B3 3 untranslated region (UTR). Moreover, SH2B3 expression was positively regulated by MIR22HG but negatively modulated by miR-9-3p. Rescue assays suggested that the suppressive effect of MIR22HG knockdown on cell viability, apoptosis, and ECM accumulation was reversed by the overexpression of SH2B3. The in vivo experiments demonstrated that MIR22HG knockdown alleviated cardiomyocyte apoptosis and reduced myocardial infarct size in MIRI mice. In summary, MIR22HG knockdown alleviates myocardial injury through the miR-9-3p/SH2B3 axis.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3